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Digital Signatures
• Demonstrates the validity of a 

message
• 1976: Concept invented by Diffie 

& Hellman
• 1980: Digital Signatures Patent
• 1983: Made practical by Rivest, 

Shamir & Adleman
• 1988: First X.509 Digital Signature 

Standard issued
• Architecture not changed 

significantly for 40 years!



Traditional Digital Signatures
• To validate a message:
• Canonicalize message
• Hash the message
• Encrypt hash with private key
• Validate with public key

• Embody in a Certificate Data 
Format
• Typically ASN.1/X.509

• Signed by other Certificates
• Confirmed using Trust Policy



The Trust Policy
• The Trust Policy is defined and 

limited by third-parties
• A Certificate Authority
• An App, a Browser or OS

• The Trust Policy is NOT defined by 
the signer or verifier!
• Is the intent of the signer fully 

expressed?
• Does the verifier understand the 

intent of the signer?
• Does the CA or App understand the 

trust requirements of the verifier?



New Kinds of Signatures
• Modern crypto now allows:
• Multi-Signatures
• Ring Signatures
• Blind Signatures
• Aggregated Signatures
• Confidential Signatures

• Traditional digital signature data 
formats have had difficulty 
adapting to these new forms.



Traditional Authorization
• Core use — Authorization!
• A Trust Policy ensures that the 

conditions required for a task are 
met

• Traditional Signatures
• Authenticate that a specific party 

signed a message
• Certify that the signing party is 

authorized to do the task
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Smart Signatures
• Core use — Also Authorization!
• Signature Script ensures that all 

conditions required for a task are 
met

• Smart Signatures
• Additional parties can be 

authorized
• Parties can delegate authorization
• AND/OR expressions
• Conditions can be more than who 

signed!



Smart Signatures
• The Difference
• Trust Policy is interpreted not by a 

CA, or code executed by an App, 
Browser or OS.

• The Trust Policy is embodied by 
the signer into the signature itself

• Conceived at first 
#RebootingWebOfTrust  
Design Workshop December 2015
• Christopher Allen, Greg Maxwell, Peter 

Todd, Ryan Shea, Pieter Wuille, Joseph 
Bonneau, Joseph Poon, and Tyler Close



Our Inspiration
• Bitcoin Transaction Signature
• Uses a stateless predicate 

language (aka “Script”)
• Created by the signer
• Based on the signer’s Trust 

Policy
• Supports ANDs, ORs, multi-sigs, 

time-locks, puzzles, or even 
other scripts

• Many other possible use cases

OP_DEPTH 1 OP_EQUAL
IF
    <pubKeyPresident>
    OP_CHECKSIGNATURE 
ELSE
    2 <pubKeyVicePresidentA> 
    <pubKeyVicePresidentB> 
    <pubKeyVicePresidentC>
    3 OP_CHECKMULTISIG
ENDIF

1 key OR 2 of 3 keys



Use Case: Multifactor Expressions
• Multiple parties within a single 

smart signature
• N of N signatures
• M of N signatures
• Logical AND and ORs

• Other possible elements
• biometric signatures
• proof of hardware control
• etc.



Use Case: Signature Delegation
• Signers should be able to:
• Delegate to another party
• Limit delegated usage based on 
• Time (“1 month”)
• Function (“only purchases”)
• Content (“not more than $5K”)

• Optionally to permanently pass 
control if usage of a key ceases 



Use Case: Multiple Combinations
• Multiple Combinations

• multifactor & delegation & message 
context

• For instance:
• Development Release / Continuous 

Integration Toolchain

• multifactor 3-of-5 signatures

• one signer has authorized his 
assistant because he’s on leave

• another signer requires 2-of-2 keys 
for his signature
• one of which is stored on a 

hardware token.



Use Case: Transactional Support
• Signatures are often part of a 

larger process
• Prove specific transactional 

states exist
• Test against Oracles

• For instance
• “No more than $5K has already 

been spent this month”
• Transactional history of a 

painting to ensure provenance



Requirements
• Smart Signatures are complex and 

thus have security pitfalls

• The script language
• The signatures & the system

• Six categories of requirements

• Composable

• Inspectable

• Provable

• Deterministic

• Bounded

• Efficient

} language

} system



Requirement: Composable
• A smart signature language 

should be Composable
• Aggregate simple behaviors into 

more complex ones
• Simple data structures: stacks, 

lists, etc.
• Constrained set of operations to 

allow security review
• Inspiration: Forth, Scheme, 

Haskell, etc.



Requirement: Inspectable
• A smart signature language 

should be Inspectable
• Understandable by a qualified 

programmer
• Make visible the many elements 

of the signature script and how 
they will be verified

• Help the programmer evaluate 
the function and purpose of script



Requirement: Provable
• A smart signature language 

should be Provable
• Formally analyzable to prove 

correctness
• Support expert tools to discover 

hidden bugs



Requirements: Deterministic
• A smart signature system should 

be Deterministic
• Scripts should always produce 

the same result
• Even on different OS or 

hardware



Requirement: Bounded
• A smart signature system should 

be Bounded
• Execution must not exceed 

appropriate CPU or memory 
limitations 

• Minimize the size of scripts in 
order to limit bandwidth and 
storage costs.

• Enforcement of these limitations 
must also be deterministic.



Requirement: Efficient
• A smart signature system should 

be Efficient
• No requirements on the difficulty 

of creating signatures
• The cost of verifying should be 

very low



A Challenge: Privacy?
• Always a trade-off between 

flexibility & privacy
• Reveals information about Signers
• Smart signature functionality may 

allow correlation

• Reduces substitutability, and thus 
may break fungibility & bearer 
aspects

• A consideration, not a requirement
• Limit sharing, execute off-chain

• Be transparent & be deliberate



Experiments: Bitcoin Script
• Bitcoin Script
• A Forth-Like Language
• Stack-Based
• Well-Tested, Well-Trusted
• Currently limited capabilities
• MAST & Schnorr coming

• + Deterministic, Bounded, 
Efficient

• ~ Composable, Inspectable
• – Provable

OP_DEPTH 1 OP_EQUAL
IF
    <pubKeyPresident>
    OP_CHECKSIGNATURE 
ELSE
    2 <pubKeyVicePresidentA> 
    <pubKeyVicePresidentB> 
    <pubKeyVicePresidentC>
    3 OP_CHECKMULTISIG
ENDIF

1 key OR 2 of 3 keyshttps://en.bitcoin.it/wiki/Script

https://en.bitcoin.it/wiki/Script


Experiments: Ivy
• The Ivy Approach
• By Chain.com
• Compiles to Bitcoin Script
• Easier syntax
• Adds named variables
• Static types
• + Inspectable Bitcoin “Script”
• Same limitations as Bitcoin Script
• – Provable

contract LockWithMultisig(
  pubKey1: PublicKey,
  pubKey2: PublicKey,
  pubKey3: PublicKey,
  val: Value
) {
  clause spend(sig1: Signature, 
sig2: Signature) {
    verify checkMultiSig([pubKey1, 
pubKey2, pubKey3], [sig1, sig2])
    unlock val
  }
}

Conditional script for debug buildhttp://docs.ivy-lang.org/bitcoin/

http://docs.ivy-lang.org/bitcoin/


Experiments: Dex
• The Dex Approach
• Deterministic Predicate 

Expressions by Peter Todd
• Scheme-like Lambda Calculus
• Optimized for Hash Tree
• Partial proofs are supported
• Built to support state machines
• + Composable, Deterministic, 

Efficient, Bounded
• ~ Inspectable, Provable

(or (checksig release-
pubkey sig (hash build))
    (and (checksig dev-
pubkey sig (hash build))
         (== build-type 
"debug")))

Conditional script for debug build
https://petertodd.org/2016/state-machine-
consensus-building-blocks

https://petertodd.org/2016/state-machine-consensus-building-blocks
https://petertodd.org/2016/state-machine-consensus-building-blocks


Experiments: Simplicity
• The Simplicity Approach
• By Russell O’Connor, Blockstream
• Sequent Calculus
• Finitary functions with bounded 

complexity 
• Formal Provable Semantics
• Scripts formally provable via Coq
• + Provable, Deterministic, 

Bounded, Efficient, Composable
• ~ Inspectable

basicSigVerify b c := 
comp (pair(witness b) 
    (pair pubKey (comp 
(witness c)sighash))) 
    (comp (pair checkSig 
unit) (case fail unit))

Basic signature verify https://blockstream.com/simplicity.pdf

https://blockstream.com/simplicity.pdf


Experiments: Simplicity
• The Simplicity Approach
• By Russell O’Connor, Blockstream
• Sequent Calculus
• Finitary functions with bounded 

complexity 
• Formal Semantics, designed to be 

formally provable via Coq
• + Provable, Deterministic, 

Bounded, Efficient
• ~ Composable, Inspectable

basicSigVerify b c := 
comp (pair(witness b) 
    (pair pubKey (comp 
(witness c)sighash))) 
    (comp (pair checkSig 
unit) (case fail unit))

Basic signature verify https://blockstream.com/simplicity.pdf

SESSION TOMOROW
10:50am!

https://blockstream.com/simplicity.pdf


Experiments: Σ–State
• The Σ–State Approach

• By Alexander Chepurnoy 

• Uses Sigma–Protocols

• Optimized for zk-proofs

• Ring & Threshold Sig

• Strong Types

• + Inspectable, Composable, 
Deterministic, Efficient

• ~ Provable, Bounded

(height ≥ 100 ∧ dlog_g 
backerPK) ∨ (height < 100 
∧ tx.has_output (amount ≥ 
100000, proposition = 
dlog_g projectPK) 

Cost Limit plus Timelock
https://github.com/ScorexFoundation/
sigmastate-interpreter 

https://github.com/ScorexFoundation/sigmastate-interpreter
https://github.com/ScorexFoundation/sigmastate-interpreter


Experiments: Michelson
• The Michelson Approach
• By Tezos
• Inspired by OCaml
• Like “Script” is Stack-Based
• Strongly Typed
• + Composable, Inspectable, 

Efficient
• ~ Provable, Bounded, Deterministic

parameter key_hash;
storage (pair timestamp (pair tez 
key_hash));
return unit;
code { 
DUP; CDAR; DUP; NOW; CMPGT; IF {FAIL} 
{}; SWAP;
DUP; CAR; DIP{CDDR}; AMOUNT; PAIR; 
SWAP; DIP{SWAP; PAIR};
DUP; CAR; AMOUNT; CMPLE; IF {FAIL} {};             
DUP; CAR;                                  
DIP{CDR; DEFAULT_ACCOUNT}; UNIT; 
TRANSFER_TOKENS;
PAIR }

https://www.tezos.com/static/
papers/language.pdf Crowdfunding Script

https://www.tezos.com/static/papers/language.pdf
https://www.tezos.com/static/papers/language.pdf


Experiments: Crypto Conditions
• The Crypto Conditions Approach
• By Ripple for Interledger
• Not a language, A JSON 

description!
• Deterministic Boolean Algebra
• Easier Testing, Limited Flexibility
• + Bounded, Efficient, 

Deterministic
• ~ Inspectable
• – Composable, Provable

const conditionDescription = {
  type: 'threshold-sha256',
  threshold: 2,
  subconditions: [{
    type: 'prefix-sha256',
    prefixUtf8: '...',
    subcondition: {
      type: 'ed25519',
      publicKey: '...' } }, {
    type: 'preimage-sha256',
       preimage: ‘...' }] }



Experiments: Status
• Bitcoin Script

• Ivy
• Dex
• Simplicity
• Σ–State

• Michelson

• Crypto Conditions

- Integrated into Bitcoin, no full stand-alone version
(github.com/kallewoof/btcdeb debugger is a start)

- Whitepaper, Full Ivy script playground available
- No Whitepaper, no implementation
- Whitepaper available, no public code yet
- Whitepaper soon, code in-progress
- Whitepaper, alpha script playground
- Whitepaper, part of Interledger reference

http://github.com/kallewoof/btcdeb


Watching: Smarm
• The Smarm Approach
• By Christopher Lemmer Webber 
• Designed for Smart Signatures, 

maybe on top of Simplicity

• Subset of Scheme R5RS, but Typed
• Restricted Environment & Lexical 

Scope based on Reese’s W7
• Can compile to Native Code

• + Composable, Inspectable, 
Deterministic,

• ~ Provable, Bounded, Efficient

?

http://bit.ly/SmarmRequirements

http://bit.ly/SmarmRequirements


Watching: Frozen Realms
• The Frozen Realms Approach
• By Miller, Morningstar, Patiño
• A “safe” subset of Javascript
• Limited Primordials
• May compile to WASM(?)
• + Composable, Inspectable,
• ~ Provable, Efficient, Deterministic

• – Bounded (Turing Complete!)

?

https://github.com/tc39/proposal-frozen-realms

https://github.com/tc39/proposal-frozen-realms


Watching: Bamboo/EVM
• The Bamboo Approach
• Designed for Ethereum
• Javascript-like
• Explicit state transitions
• Avoids reentrancy
• + Composable, Inspectable
• ~ Deterministic, Efficient
• – Provable, Bounded (Turing 

Complete!)

contract Vault(address hotwallet, address 
vaultKey, address recoveryKey) {
  case(void unvault(uint256 amount)) {
    if (sender(msg) != vaultKey) abort;
    uint256 unvaultPeriod = 60 * 60 * 24 * 7 * 
2; // two weeks
    if (now(block) + unvaultPeriod < now(block)) 
abort;
    return then become UnVaulting(now(block) + 
unvaultPeriod, amount, hotwallet, vaultKey, 
recoveryKey); }
   case(void recover(address _newHotWallet)) {
    if (sender(msg) != recoveryKey) abort;
    return then become Vault(_newHotWallet, 
vaultKey, recoveryKey); }
  case(void destroy()) {
    if (sender(msg) != recoveryKey) abort;
    return then become Destroyed(); } }

https://github.com/pirapira/bamboo

https://github.com/pirapira/bamboo


Open Questions
• Context
• Internal references?
• Lists, trees, acyclic graphs

• Run-time context?
• External process state?

• Oracles
• Preserving execution boundedness?
• What are simple MVP oracles?

• Revocation
• Proof of non-revocation?
• Short-life vs. revocation?



Open Questions
• Object Capabilities
• Are “ocap” and Least Authority 

architectures another use case?
• Cryptographic Primitives
• HD Keys?
• Poelstra’s “Scriptless Scripts”?

• Smart Contracts
• Non-predicate scripts?
• None of the experiments above 

are Turing-complete, but where 
exactly is the line between?
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