
Smart Signatures:
Experiments in Authorization

Christopher Allen
ChristopherA@Blockstream.com

mailto:ChristopherA@Blockstream.com

Digital Signatures
• Demonstrates the validity of a

message
• 1976: Concept invented by Diffie

& Hellman
• 1980: Digital Signatures Patent
• 1983: Made practical by Rivest,

Shamir & Adleman
• 1988: First X.509 Digital Signature

Standard issued
• Architecture not changed

significantly for 40 years!

Traditional Digital Signatures
• To validate a message:
• Canonicalize message
• Hash the message
• Encrypt hash with private key
• Validate with public key

• Embody in a Certificate Data
Format
• Typically ASN.1/X.509

• Signed by other Certificates
• Confirmed using Trust Policy

The Trust Policy
• The Trust Policy is defined and

limited by third-parties
• A Certificate Authority
• An App, a Browser or OS

• The Trust Policy is NOT defined by
the signer or verifier!
• Is the intent of the signer fully

expressed?
• Does the verifier understand the

intent of the signer?
• Does the CA or App understand the

trust requirements of the verifier?

New Kinds of Signatures
• Modern crypto now allows:
• Multi-Signatures
• Ring Signatures
• Blind Signatures
• Aggregated Signatures
• Confidential Signatures

• Traditional digital signature data
formats have had difficulty
adapting to these new forms.

Traditional Authorization
• Core use — Authorization!
• A Trust Policy ensures that the

conditions required for a task are
met

• Traditional Signatures
• Authenticate that a specific party

signed a message
• Certify that the signing party is

authorized to do the task

Traditional Authorization
• Core use — Authorization!
• A Trust Policy ensures that the

conditions required for a task are
met

• Traditional Signatures
• Authenticate that a specific party

signed a message
• Certify that the signing party is

authorized to do the task

Smart Signatures
• Core use — Also Authorization!
• Signature Script ensures that all

conditions required for a task are
met

• Smart Signatures
• Additional parties can be

authorized
• Parties can delegate authorization
• AND/OR expressions
• Conditions can be more than who

signed!

Smart Signatures
• The Difference
• Trust Policy is interpreted not by a

CA, or code executed by an App,
Browser or OS.

• The Trust Policy is embodied by
the signer into the signature itself

• Conceived at first
#RebootingWebOfTrust  
Design Workshop December 2015
• Christopher Allen, Greg Maxwell, Peter

Todd, Ryan Shea, Pieter Wuille, Joseph
Bonneau, Joseph Poon, and Tyler Close

Our Inspiration
• Bitcoin Transaction Signature
• Uses a stateless predicate

language (aka “Script”)
• Created by the signer
• Based on the signer’s Trust

Policy
• Supports ANDs, ORs, multi-sigs,

time-locks, puzzles, or even
other scripts

• Many other possible use cases

OP_DEPTH 1 OP_EQUAL
IF
 <pubKeyPresident>
 OP_CHECKSIGNATURE
ELSE
 2 <pubKeyVicePresidentA>
 <pubKeyVicePresidentB>
 <pubKeyVicePresidentC>
 3 OP_CHECKMULTISIG
ENDIF

1 key OR 2 of 3 keys

Use Case: Multifactor Expressions
• Multiple parties within a single

smart signature
• N of N signatures
• M of N signatures
• Logical AND and ORs

• Other possible elements
• biometric signatures
• proof of hardware control
• etc.

Use Case: Signature Delegation
• Signers should be able to:
• Delegate to another party
• Limit delegated usage based on
• Time (“1 month”)
• Function (“only purchases”)
• Content (“not more than $5K”)

• Optionally to permanently pass
control if usage of a key ceases

Use Case: Multiple Combinations
• Multiple Combinations

• multifactor & delegation & message
context

• For instance:
• Development Release / Continuous

Integration Toolchain

• multifactor 3-of-5 signatures

• one signer has authorized his
assistant because he’s on leave

• another signer requires 2-of-2 keys
for his signature
• one of which is stored on a

hardware token.

Use Case: Transactional Support
• Signatures are often part of a

larger process
• Prove specific transactional

states exist
• Test against Oracles

• For instance
• “No more than $5K has already

been spent this month”
• Transactional history of a

painting to ensure provenance

Requirements
• Smart Signatures are complex and

thus have security pitfalls

• The script language
• The signatures & the system

• Six categories of requirements

• Composable

• Inspectable

• Provable

• Deterministic

• Bounded

• Efficient

} language

} system

Requirement: Composable
• A smart signature language

should be Composable
• Aggregate simple behaviors into

more complex ones
• Simple data structures: stacks,

lists, etc.
• Constrained set of operations to

allow security review
• Inspiration: Forth, Scheme,

Haskell, etc.

Requirement: Inspectable
• A smart signature language

should be Inspectable
• Understandable by a qualified

programmer
• Make visible the many elements

of the signature script and how
they will be verified

• Help the programmer evaluate
the function and purpose of script

Requirement: Provable
• A smart signature language

should be Provable
• Formally analyzable to prove

correctness
• Support expert tools to discover

hidden bugs

Requirements: Deterministic
• A smart signature system should

be Deterministic
• Scripts should always produce

the same result
• Even on different OS or

hardware

Requirement: Bounded
• A smart signature system should

be Bounded
• Execution must not exceed

appropriate CPU or memory
limitations

• Minimize the size of scripts in
order to limit bandwidth and
storage costs.

• Enforcement of these limitations
must also be deterministic.

Requirement: Efficient
• A smart signature system should

be Efficient
• No requirements on the difficulty

of creating signatures
• The cost of verifying should be

very low

A Challenge: Privacy?
• Always a trade-off between

flexibility & privacy
• Reveals information about Signers
• Smart signature functionality may

allow correlation

• Reduces substitutability, and thus
may break fungibility & bearer
aspects

• A consideration, not a requirement
• Limit sharing, execute off-chain

• Be transparent & be deliberate

Experiments: Bitcoin Script
• Bitcoin Script
• A Forth-Like Language
• Stack-Based
• Well-Tested, Well-Trusted
• Currently limited capabilities
• MAST & Schnorr coming

• + Deterministic, Bounded,
Efficient

• ~ Composable, Inspectable
• – Provable

OP_DEPTH 1 OP_EQUAL
IF
 <pubKeyPresident>
 OP_CHECKSIGNATURE
ELSE
 2 <pubKeyVicePresidentA>
 <pubKeyVicePresidentB>
 <pubKeyVicePresidentC>
 3 OP_CHECKMULTISIG
ENDIF

1 key OR 2 of 3 keyshttps://en.bitcoin.it/wiki/Script

https://en.bitcoin.it/wiki/Script

Experiments: Ivy
• The Ivy Approach
• By Chain.com
• Compiles to Bitcoin Script
• Easier syntax
• Adds named variables
• Static types
• + Inspectable Bitcoin “Script”
• Same limitations as Bitcoin Script
• – Provable

contract LockWithMultisig(
 pubKey1: PublicKey,
 pubKey2: PublicKey,
 pubKey3: PublicKey,
 val: Value
) {
 clause spend(sig1: Signature,
sig2: Signature) {
 verify checkMultiSig([pubKey1,
pubKey2, pubKey3], [sig1, sig2])
 unlock val
 }
}

Conditional script for debug buildhttp://docs.ivy-lang.org/bitcoin/

http://docs.ivy-lang.org/bitcoin/

Experiments: Dex
• The Dex Approach
• Deterministic Predicate

Expressions by Peter Todd
• Scheme-like Lambda Calculus
• Optimized for Hash Tree
• Partial proofs are supported
• Built to support state machines
• + Composable, Deterministic,

Efficient, Bounded
• ~ Inspectable, Provable

(or (checksig release-
pubkey sig (hash build))
 (and (checksig dev-
pubkey sig (hash build))
 (== build-type
"debug")))

Conditional script for debug build
https://petertodd.org/2016/state-machine-
consensus-building-blocks

https://petertodd.org/2016/state-machine-consensus-building-blocks
https://petertodd.org/2016/state-machine-consensus-building-blocks

Experiments: Simplicity
• The Simplicity Approach
• By Russell O’Connor, Blockstream
• Sequent Calculus
• Finitary functions with bounded

complexity
• Formal Provable Semantics
• Scripts formally provable via Coq
• + Provable, Deterministic,

Bounded, Efficient, Composable
• ~ Inspectable

basicSigVerify b c :=
comp (pair(witness b)
 (pair pubKey (comp
(witness c)sighash)))
 (comp (pair checkSig
unit) (case fail unit))

Basic signature verify https://blockstream.com/simplicity.pdf

https://blockstream.com/simplicity.pdf

Experiments: Simplicity
• The Simplicity Approach
• By Russell O’Connor, Blockstream
• Sequent Calculus
• Finitary functions with bounded

complexity
• Formal Semantics, designed to be

formally provable via Coq
• + Provable, Deterministic,

Bounded, Efficient
• ~ Composable, Inspectable

basicSigVerify b c :=
comp (pair(witness b)
 (pair pubKey (comp
(witness c)sighash)))
 (comp (pair checkSig
unit) (case fail unit))

Basic signature verify https://blockstream.com/simplicity.pdf

SESSION TOMOROW
10:50am!

https://blockstream.com/simplicity.pdf

Experiments: Σ–State
• The Σ–State Approach

• By Alexander Chepurnoy

• Uses Sigma–Protocols

• Optimized for zk-proofs

• Ring & Threshold Sig

• Strong Types

• + Inspectable, Composable,
Deterministic, Efficient

• ~ Provable, Bounded

(height ≥ 100 ∧ dlog_g
backerPK) ∨ (height < 100
∧ tx.has_output (amount ≥
100000, proposition =
dlog_g projectPK)

Cost Limit plus Timelock
https://github.com/ScorexFoundation/
sigmastate-interpreter

https://github.com/ScorexFoundation/sigmastate-interpreter
https://github.com/ScorexFoundation/sigmastate-interpreter

Experiments: Michelson
• The Michelson Approach
• By Tezos
• Inspired by OCaml
• Like “Script” is Stack-Based
• Strongly Typed
• + Composable, Inspectable,

Efficient
• ~ Provable, Bounded, Deterministic

parameter key_hash;
storage (pair timestamp (pair tez
key_hash));
return unit;
code {
DUP; CDAR; DUP; NOW; CMPGT; IF {FAIL}
{}; SWAP;
DUP; CAR; DIP{CDDR}; AMOUNT; PAIR;
SWAP; DIP{SWAP; PAIR};
DUP; CAR; AMOUNT; CMPLE; IF {FAIL} {};
DUP; CAR;
DIP{CDR; DEFAULT_ACCOUNT}; UNIT;
TRANSFER_TOKENS;
PAIR }

https://www.tezos.com/static/
papers/language.pdf Crowdfunding Script

https://www.tezos.com/static/papers/language.pdf
https://www.tezos.com/static/papers/language.pdf

Experiments: Crypto Conditions
• The Crypto Conditions Approach
• By Ripple for Interledger
• Not a language, A JSON

description!
• Deterministic Boolean Algebra
• Easier Testing, Limited Flexibility
• + Bounded, Efficient,

Deterministic
• ~ Inspectable
• – Composable, Provable

const conditionDescription = {
 type: 'threshold-sha256',
 threshold: 2,
 subconditions: [{
 type: 'prefix-sha256',
 prefixUtf8: '...',
 subcondition: {
 type: 'ed25519',
 publicKey: '...' } }, {
 type: 'preimage-sha256',
 preimage: ‘...' }] }

Experiments: Status
• Bitcoin Script

• Ivy
• Dex
• Simplicity
• Σ–State

• Michelson

• Crypto Conditions

- Integrated into Bitcoin, no full stand-alone version
(github.com/kallewoof/btcdeb debugger is a start)

- Whitepaper, Full Ivy script playground available
- No Whitepaper, no implementation
- Whitepaper available, no public code yet
- Whitepaper soon, code in-progress
- Whitepaper, alpha script playground
- Whitepaper, part of Interledger reference

http://github.com/kallewoof/btcdeb

Watching: Smarm
• The Smarm Approach
• By Christopher Lemmer Webber
• Designed for Smart Signatures,

maybe on top of Simplicity

• Subset of Scheme R5RS, but Typed
• Restricted Environment & Lexical

Scope based on Reese’s W7
• Can compile to Native Code

• + Composable, Inspectable,
Deterministic,

• ~ Provable, Bounded, Efficient

?

http://bit.ly/SmarmRequirements

http://bit.ly/SmarmRequirements

Watching: Frozen Realms
• The Frozen Realms Approach
• By Miller, Morningstar, Patiño
• A “safe” subset of Javascript
• Limited Primordials
• May compile to WASM(?)
• + Composable, Inspectable,
• ~ Provable, Efficient, Deterministic

• – Bounded (Turing Complete!)

?

https://github.com/tc39/proposal-frozen-realms

https://github.com/tc39/proposal-frozen-realms

Watching: Bamboo/EVM
• The Bamboo Approach
• Designed for Ethereum
• Javascript-like
• Explicit state transitions
• Avoids reentrancy
• + Composable, Inspectable
• ~ Deterministic, Efficient
• – Provable, Bounded (Turing

Complete!)

contract Vault(address hotwallet, address
vaultKey, address recoveryKey) {
 case(void unvault(uint256 amount)) {
 if (sender(msg) != vaultKey) abort;
 uint256 unvaultPeriod = 60 * 60 * 24 * 7 *
2; // two weeks
 if (now(block) + unvaultPeriod < now(block))
abort;
 return then become UnVaulting(now(block) +
unvaultPeriod, amount, hotwallet, vaultKey,
recoveryKey); }
 case(void recover(address _newHotWallet)) {
 if (sender(msg) != recoveryKey) abort;
 return then become Vault(_newHotWallet,
vaultKey, recoveryKey); }
 case(void destroy()) {
 if (sender(msg) != recoveryKey) abort;
 return then become Destroyed(); } }

https://github.com/pirapira/bamboo

https://github.com/pirapira/bamboo

Open Questions
• Context
• Internal references?
• Lists, trees, acyclic graphs

• Run-time context?
• External process state?

• Oracles
• Preserving execution boundedness?
• What are simple MVP oracles?

• Revocation
• Proof of non-revocation?
• Short-life vs. revocation?

Open Questions
• Object Capabilities
• Are “ocap” and Least Authority

architectures another use case?
• Cryptographic Primitives
• HD Keys?
• Poelstra’s “Scriptless Scripts”?

• Smart Contracts
• Non-predicate scripts?
• None of the experiments above

are Turing-complete, but where
exactly is the line between?

References
C. Allen, G. Maxwell, P. Todd, R.
Shea, P. Wuille, J. Bonneau, J. Poon,
and T. Close. “Smart Signatures”.
Rebooting the Web of Trust I. https://
github.com/WebOfTrustInfo/
rebooting-the-web-of-trust/blob/
master/final-documents/smart-
signatures.pdf. 2015.

C. Allen, S. Appelcline. “Smarter
Signatures: Experiments in
Verification”. Rebooting the Web of
Trust II. https://github.com/
WebOfTrustInfo/
ID2020DesignWorkshop/blob/master/
final-documents/smarter-
signatures.pdf. 2016.

bit.ly/SmarterSignatures #SmartSignatures

https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust/blob/master/final-documents/smart-signatures.pdf
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust/blob/master/final-documents/smart-signatures.pdf
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust/blob/master/final-documents/smart-signatures.pdf
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust/blob/master/final-documents/smart-signatures.pdf
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust/blob/master/final-documents/smart-signatures.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/final-documents/smarter-signatures.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/final-documents/smarter-signatures.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/final-documents/smarter-signatures.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/final-documents/smarter-signatures.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/final-documents/smarter-signatures.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/final-documents/smarter-signatures.pdf

March 6-8th in Santa Barbara

https://rwot6.eventbrite.com

Are you a Language Geek? Come
to Next #RebootingWebOfTrust

“To influence the future of
decentralized trust and self-sovereign
identity through the establishment &
promotion of decentralized identity
technology. This is done via the
collaborative creation of white papers
and specifications & by public
presentations of these ideas.”

https://rwot6.eventbrite.com

Christopher Allen

ChristopherA@Blockstream.com
http://www.Blockstream.com

PGP: FDA6C78E

http://www.Blockstream.com

